
Introduction The LLVM Backend Outlook

Compiling Scala to LLVM

Geoff Reedy

University of New Mexico

Scala Days 2011



Introduction The LLVM Backend Outlook

Motivation

Why Scala on LLVM?

Compiles to native code
Fast startup
Efficient implementations
Leverage LLVM optimizations/analyses
Language implementation research
Scala as a multi-platform language



Introduction The LLVM Backend Outlook

Motivation

Why Scala on LLVM? – Native code

Deploy Scala where a JVM is. . .
not available
not desired
old and slow

For example. . .
Apple iOS
Google Native Client



Introduction The LLVM Backend Outlook

Motivation

Why Scala on LLVM? – Fast startup

JVM startup dominates running time of short programs
→ Scala+JVM is not so great for scripting and utilties

LLVM start up is really fast
→ Small utilities spend most time doing useful work



Introduction The LLVM Backend Outlook

Motivation

Why Scala on LLVM? – Efficient implementation

LLVM allows more efficient implementations of
traits
anonymous functions
structural types



Introduction The LLVM Backend Outlook

Motivation

Why Scala on LLVM? – The rest

Language implementation research
Scala+LLVM can be a place for innovation in language
implementation issues

Multi-platform language
Scala already lets the programmer choose the right
paradigm

Let them pick the right platform too



Introduction The LLVM Backend Outlook

About LLVM

What is LLVM?

LLVM is. . .
an abbreviation of Low Level Virtual Machine
a universal assembly language
a framework for program optimization and analysis
an ahead of time compiler
a just in time compiler
a way to get fast native code without writing your
own code generation



Introduction The LLVM Backend Outlook

About LLVM

LLVM IR

LLVM’s intermediate representation is essentially a typed
assembly language with

primitive and aggregate types
unlimited SSA registers
basic blocks
tail calls
instruction and module level metadata



Introduction The LLVM Backend Outlook

About LLVM

LLVM IR Sample

Figure: Factorial Function

define i32 @factorial(i32 %n) {
entry:

%iszero = icmp eq i32 %n, 0
br i1 %iszero, label %return1, label %recurse

return1:
ret i32 1

recurse:
%nminus1 = add i32 %n, -1
%factnminusone =
call i32 @factorial(i32 %nminus1)

%factn = mul i32 %n, %factnminusone
ret i32 %factn

}



Introduction The LLVM Backend Outlook

About LLVM

LLVM analysis and optimization

LLVM is more than just an assembler

Analyses
Alias Analysis Liveness Analysis Def-Use Analysis

Memory Dependence Analysis and more. . .

Optimizations
Constant Propagation Loop Unrolling Function Inlining

Dead Code Elimination Peephole Optimizations
Partial Specialization Link-time Optimization

and more. . .



Introduction The LLVM Backend Outlook

About LLVM

LLVM is great for compiler hackers

LLVM lets you
spit out LLVM IR
write high-level language-specific optimizations
leave the low-level details to the LLVM infrastructure

You get to focus on your language and make the rest of it
someone else’s problem



Introduction The LLVM Backend Outlook

About LLVM

LLVM is great for compiler hackers

LLVM lets you
spit out LLVM IR
write high-level language-specific optimizations
leave the low-level details to the LLVM infrastructure

You get to focus on your language and make the rest of it
someone else’s problem



Introduction The LLVM Backend Outlook

About LLVM

LLVM is great for compiler hackers

LLVM lets you
spit out LLVM IR
write high-level language-specific optimizations
leave the low-level details to the LLVM infrastructure

You get to focus on your language and make the rest of it
someone else’s problem



Introduction The LLVM Backend Outlook

About LLVM

LLVM is great for compiler hackers

LLVM lets you
spit out LLVM IR
write high-level language-specific optimizations
leave the low-level details to the LLVM infrastructure

You get to focus on your language and make the rest of it
someone else’s problem



Introduction The LLVM Backend Outlook

The Scala compiler

Compiler phases

foo.scala

Parser

GenICode

foo.icode

GenLLVM

foo.ll

The Scala compiler is organized as a
pipeline of phases.

1 Source code is parsed into syntax
trees

2 Syntax trees are typed,
transformed, lifted, lowered,
desugared

3 ICode is generated from the
syntax trees

4 LLVM is generated from ICode



Introduction The LLVM Backend Outlook

The Scala compiler

Compiler phases

foo.scala

Parser

GenICode

foo.icode

GenLLVM

foo.ll

The Scala compiler is organized as a
pipeline of phases.

1 Source code is parsed into syntax
trees

2 Syntax trees are typed,
transformed, lifted, lowered,
desugared

3 ICode is generated from the
syntax trees

4 LLVM is generated from ICode



Introduction The LLVM Backend Outlook

The Scala compiler

Compiler phases

foo.scala

Parser

GenICode

foo.icode

GenLLVM

foo.ll

The Scala compiler is organized as a
pipeline of phases.

1 Source code is parsed into syntax
trees

2 Syntax trees are typed,
transformed, lifted, lowered,
desugared

3 ICode is generated from the
syntax trees

4 LLVM is generated from ICode



Introduction The LLVM Backend Outlook

The Scala compiler

Compiler phases

foo.scala

Parser

GenICode

foo.icode

GenLLVM

foo.ll

The Scala compiler is organized as a
pipeline of phases.

1 Source code is parsed into syntax
trees

2 Syntax trees are typed,
transformed, lifted, lowered,
desugared

3 ICode is generated from the
syntax trees

4 LLVM is generated from ICode



Introduction The LLVM Backend Outlook

The Scala compiler

Compiler phases

foo.scala

Parser

GenICode

foo.icode

GenLLVM

foo.ll

The Scala compiler is organized as a
pipeline of phases.

1 Source code is parsed into syntax
trees

2 Syntax trees are typed,
transformed, lifted, lowered,
desugared

3 ICode is generated from the
syntax trees

4 LLVM is generated from ICode



Introduction The LLVM Backend Outlook

The Scala compiler

ICode

ICode is the compiler’s internal intermediate
representation

Like LLVM IR, it. . .
is typed
has basic blocks

Unlike LLVM IR, it is
stack based

Basically mirrors JVM
bytecodes

def fact(n: Int): Int = {
if (n == 0) 1 else n * fact(n-1)

}



Introduction The LLVM Backend Outlook

The Scala compiler

ICode

ICode is the compiler’s internal intermediate
representation

Like LLVM IR, it. . .
is typed
has basic blocks

Unlike LLVM IR, it is
stack based

Basically mirrors JVM
bytecodes

def fact(n: Int (INT)): Int {
locals: value n; startBlock: 1; blocks: [1,2,3,4]
1: LOAD_LOCAL(value n)

CONSTANT(0)
CJUMP (INT)EQ ? 2 : 3

2: CONSTANT(1)
JUMP 4

3: LOAD_LOCAL(value n)
THIS(fact)
LOAD_LOCAL(value n)
CONSTANT(1)
CALL_PRIMITIVE(Arithmetic(SUB,INT))
CALL_METHOD fact.fact (dynamic)
CALL_PRIMITIVE(Arithmetic(MUL,INT))
JUMP 4

4: RETURN(INT)
}



Introduction The LLVM Backend Outlook

From ICode to LLVM

Translating ICode to LLVM

What’s the simplest thing that could work?
Translate one instruction at a time.

Problem
Because it’s a local process creates redundant, slow code

Solution
Let LLVM optimization passes clean it up for us



Introduction The LLVM Backend Outlook

From ICode to LLVM

Translating ICode to LLVM

What’s the simplest thing that could work?
Translate one instruction at a time.

Problem
Because it’s a local process creates redundant, slow code

Solution
Let LLVM optimization passes clean it up for us



Introduction The LLVM Backend Outlook

From ICode to LLVM

Translating ICode to LLVM

What’s the simplest thing that could work?
Translate one instruction at a time.

Problem
Because it’s a local process creates redundant, slow code

Solution
Let LLVM optimization passes clean it up for us



Introduction The LLVM Backend Outlook

From ICode to LLVM

Translating ICode to LLVM

What’s the simplest thing that could work?
Translate one instruction at a time.

Problem
Because it’s a local process creates redundant, slow code

Solution
Let LLVM optimization passes clean it up for us



Introduction The LLVM Backend Outlook

From ICode to LLVM

Stacks to SSA

Problem
ICode is stack based; LLVM IR is register based

Solution
Maintain a mapping from stack slots to LLVM values during
translation



Introduction The LLVM Backend Outlook

From ICode to LLVM

Stacks to SSA

ICode fragment:
CONSTANT(1)

CALL_PRIMITIVE(Arithmetic(SUB,INT))

Stack map:
i32 %n . . .



Introduction The LLVM Backend Outlook

From ICode to LLVM

Stacks to SSA

ICode fragment:
CONSTANT(1)

CALL_PRIMITIVE(Arithmetic(SUB,INT))

Stack map:
i32 %n . . .



Introduction The LLVM Backend Outlook

From ICode to LLVM

Stacks to SSA

ICode fragment:
CONSTANT(1)

CALL_PRIMITIVE(Arithmetic(SUB,INT))

Stack map:
i32 1 i32 %n · · ·



Introduction The LLVM Backend Outlook

From ICode to LLVM

Stacks to SSA

ICode fragment:
CONSTANT(1)

CALL_PRIMITIVE(Arithmetic(SUB,INT))

Stack map:
i32 1 i32 %n · · ·

%d = sub i32 %n, 1



Introduction The LLVM Backend Outlook

From ICode to LLVM

Stacks to SSA

ICode fragment:
CONSTANT(1)

CALL_PRIMITIVE(Arithmetic(SUB,INT))

Stack map:
i32 %d . . .

%d = sub i32 %n, 1



Introduction The LLVM Backend Outlook

Classes and objects

Classes in LLVM

For now, we use a simple representation:
Class types are represented by structures in LLVM.
The first member is the super-class structure.
Object references are simple pointers to these
structures.
The base object structure has a pointer to the class’
info as its only member.
Class info contains virtual method tables and other
important info.



Introduction The LLVM Backend Outlook

Classes and objects

Traits

We use fat interface references: a structure containing
an object pointer
a vtable pointer

Advantages:
Calling through interfaces is fast
Facilitates anonymous interfaces for structure types



Introduction The LLVM Backend Outlook

Calls and exceptions

Method dispatch

Method dispatch is pretty simple
Static method Call function directly

Class instance method Lookup class vtable
Call method through vtable

Interface method Call method through interface
reference’s vtable



Introduction The LLVM Backend Outlook

Calls and exceptions

Exceptions

It’s Complicated

but it works

Ask me later if you really want to know



Introduction The LLVM Backend Outlook

Calls and exceptions

Exceptions

It’s Complicated

but it works

Ask me later if you really want to know



Introduction The LLVM Backend Outlook

Calls and exceptions

Exceptions

It’s Complicated

but it works

Ask me later if you really want to know



Introduction The LLVM Backend Outlook

The runtime

Runtime library

Problem
We don’t have Java’s standard library as a base

Solution
Write our own

Problem
It’s a big effort.
We have some basic things implemented.
It’s a mix of C and Scala (with some @native methods).



Introduction The LLVM Backend Outlook

The runtime

Loader and launcher

After compilation you get LLVM IR
Then you assemble it to LLVM bitcode
The loader runscala will

1 initialize LLVM
2 load the program’s bitcode
3 synthesize a function that

1 installs a top-level exception handler
2 converts argv to a Scala array
3 invokes main

4 starts the JIT and calls the function
Ahead-of-time compilation: write bitcode and generate
native executable



Introduction The LLVM Backend Outlook

Status

What works

We can compile and run a simple program that includes
traits; abstract classes; objects
exceptions
arrays
overriding and overloading
integer and floating point computation



Introduction The LLVM Backend Outlook

Status

What doesn’t

We don’t yet have
separate compilation
garbage collection
reflection
threads
a complete runtime library



Introduction The LLVM Backend Outlook

Future goals

Lightweight functions

LLVM has function pointers
We don’t need to build objects just to get something
callable
Could anonymous functions be treated as the
primitives?



Introduction The LLVM Backend Outlook

Future goals

Foreign function interface

We should be able to use native platform libraries!
How about a declarative, annotation driven FFI?
Replace @native methods with the FFI



Introduction The LLVM Backend Outlook

Future goals

Scala specific optimizations

LLVM can be extended with new analyses and
optimizations
Link time devirtualization!



Introduction The LLVM Backend Outlook

Future goals

Platform abstraction of Scala libraries

Much of Scala’s library is tied to the JVM
Modularize the library
Separate generic and implementation specific code
Mixin platform traits



Introduction The LLVM Backend Outlook

Thanks

Questions?

For more information
http://greedy.github.com/scala/

greedy@cs.unm.edu

http://greedy.github.com/scala/

	Introduction
	Motivation
	About LLVM

	The LLVM Backend
	The Scala compiler
	From ICode to LLVM
	Classes and objects
	Calls and exceptions
	The runtime
	Status

	Outlook
	Future goals


