
Working Draft

Compiling Scala to LLVM

Geoffrey Reedy
The University of New Mexico

greedy@cs.unm.edu

Abstract
This paper describes ongoing work to implement a new
backend for the Scala compiler that targets the Low Level
Virtual Machine (LLVM). LLVM aims to provide a uni-
versal intermediate representation for compilers to target
and a framework for program transformations and analyses.
LLVM also provides facilities for ahead-of-time and just-in-
time native code generation. Targeting LLVM allows us to
take advantage of this framework to compile Scala source
code to optimized native executables. We discuss the design
and implementation of our backend. We also outline the ad-
ditional work needed to produce a robust backend.

Keywords LLVM, Language Implementation, Virtual Ma-
chines, Code Generation, Compilers

1. Introduction
In this paper we present a new backend for the Scala com-
piler with targets the Low Level Virtual Machine (LLVM).
At its core LLVM provides a type-safe universal assembly
language designed to be targeted by high-level compilers.
LLVM also supplies a framework for life-long program anal-
ysis, optimizations and just-in-time compilation of programs
written in for LLVM. LLVM is an attractive target because
it can handle low level optimizations and native code gen-
eration. Language specific optimizations can also be written
using the LLVM API.

The Scala compiler currently targets the Java Virtual
Machine (JVM) and the Common Language Infrastructure
(CLI). Both the JVM and the CLI are managed runtimes
for class based object oriented programming languages.
They provide runtime features such as garbage collection,
method dispatch, thread-based concurrency, and rich li-
braries. LLVM, true to its name, does not provide these
features. Instead it supplies what a language implementer

[Copyright notice will appear here once ’preprint’ option is removed.]

needs to build exactly those facilities that are needed by the
language.

Because LLVM can generate standalone native code it
does not require a virtual machine on deployment targets.
This could lead to Scala being viable for writing programs
for platforms where a JVM is not available including embed-
ded systems and Apple’s iOS platform. Scala programs com-
piled to LLVM would also not suffer from the long startup
time required for the JVM making Scala a more attractive
choice for system programming and scripting.

Scala on LLVM can also provide a platform for experi-
mentation in implementation techniques for a hybrid func-
tional/object oriented language.

2. The Scala Compiler
Scala’s compiler is built on a powerful and flexible frame-
work that allows the compiler to be assembled from separate
components each implementing different aspects of com-
pilation. The target platform for code generation is one of
these components. This section gives an overview of the
architecture of Scala’s compiler as it relates to creating a
new backend, a full treatment of this architecture can be
found in Odersky’s 2005 paper Scalable Component Ab-
stractions[10].

2.1 Compiler Phases
The compilation process is implemented as a collection of
phases that are called for each compilation unit. Each phase
declares which other phases it depends on and the compiler
runs the phases in an order satisfying these ordering con-
straints.

The first phase parses each source file into a program tree.
The following phases enter symbols to the compiler’s sym-
bol table and annotate program trees with types. Subsequent
phases lower, desugar and perform other type-directed oper-
ations on the typed trees.

Code for the target platform is not generated directly from
these trees. Instead one of the later compiler phases translate
the typed trees into an intermediate representation called
ICode. There are a few phases that perform optimizations
by rewriting ICode. The final phases generate code for the
target platform from the ICode.

Submission for the Second Scala Workshop 1 2011/2/8



2.2 ICode
ICode is a stack based intermediate representation for Scala
programs. The top level entities in ICode are classes. Classes
in ICode have fields and methods as members. Both fields
and methods refer to a symbol in the compiler’s symbol table
which holds the name and type information for the member.
Besides the symbol, fields contain no extra information;
methods however contain a list of local variables (including
parameters) and a list of basic blocks containing the code for
the method.

Basic blocks in ICode have a single entry and normal exit
point. However, execution may also leave a basic block pre-
maturely when an exception is raised. Each method contains
a (possibly empty) list of the exception handlers for the code
in the method. An exception handler may cover one or more
basic blocks. The handlers are stored in order from inner-
most to outermost so that iteration over the handlers for a
given block will yield the handlers in the order that they
should be applied.

The execution model for ICode is that of a stack based
machine with a single operand stack. Each instruction con-
sumes its arguments from and produces its results on this
stack. The semantics of ICode instructions are quite similar
to that of Java bytecode. As an example the Scala source and
resulting ICode for a factorial function is shown in Figure 1.

ICode instructions are annotated with enough type infor-
mation that the types of values consumed from and pushed
onto the operand stack can be precisely determined. This al-
lows verification that optimizations and other ICode trans-
formations preserve type-safety. It is important to note, how-
ever, that in ICode type parameters have been erased. This
design choice seems to have been driven by the fact that the
first targets for code generation did not support parameter-
ized types.

2.3 Platforms
One of the components plugged into the compiler object
describes the target platform. This component defines how
information on external types is located and loaded into the
symbol table, the platform specific phases that should be
incorporated and the implementation of a few other platform
abstractions. For example, the JVM platform specifies that
referenced types should be loaded from Java class files found
on the compilation classpath and that the genJVM phase
should be run to generate Java class files from the ICode
classes. The main addition to the Scala compiler for this
project is the additional platform component for LLVM and
the code generation phase it instructs the compiler to use.

3. Low Level Virtual Machine
The Low Level Virtual Machine (LLVM) is an open source
compiler framework for optimization[6], code generation
and lifelong program analysis[7]. It began as a research
project at the University of Illinois and is now being used

Scala source for fact
def fact(n: Int): Int = {

if (n == 0) 1 else n * fact(n-1)

}

ICode for fact
def fact(n: Int (INT)): Int {

locals: value n

startBlock: 1

blocks: [1,2,3,4]

1:

LOAD_LOCAL(value n)

CONSTANT(0)

CJUMP (INT)EQ ? 2 : 3

2:

CONSTANT(1)

JUMP 4

3:

LOAD_LOCAL(value n)

THIS(fact)

LOAD_LOCAL(value n)

CONSTANT(1)

CALL_PRIMITIVE(Arithmetic(SUB,INT))

CALL_METHOD fact.fact (dynamic)

CALL_PRIMITIVE(Arithmetic(MUL,INT))

JUMP 4

4:

RETURN(INT)

}

Figure 1. ICode Example: Factorial

by a number of open source and commercial projects[1]. It
is used as the target for a number of functional and object
oriented languages including Haskell[11] and Python[2].

3.1 Intermediate Representation
There are three equivalent representations for LLVM assem-
bly, called LLVM Intermediate Representation (LLVM IR),
a textual syntax for human inspection and authoring, a space
efficient binary format and an in memory representation used
by the LLVM tools an libraries. LLVM includes tools for
processing code in the binary format (LLVM Bitcode) and
converting between the textual and binary forms, these tools
are described in more detail below.

The semantics of LLVM IR are defined in the LLVM
Language Reference Manual[8]. LLVM IR is essentially a
register transfer language (RTL)[4] given in static single
assignment (SSA) form [3]. LLVM IR is distinguished from
most RTL languages by the presence and use of high-level
type information. This type information and the dataflow
information implicit in the SSA form provide opportunities

Submission for the Second Scala Workshop 2 2011/2/8



define i32 @factorial(i32 %n) {

entry:

%iszero = icmp eq i32 %n, 0

br i1 %iszero, label %return1, label %recurse

return1:

ret i32 1

recurse:

%nminus1 = add i32 %n, -1

%factnminusone =

call i32 @factorial(i32 %nminus1)

%factn = mul i32 %n, %factnminusone

ret i32 %factn

}

Figure 2. LLVM Example: Factorial

for much richer optimizations and analyses than are typically
possible for a low level representation. As an example, type
safe pointer manipulation enables much more precise alias
analysis.

A complete function written in LLVM IR is shown in
Figure 2. This demonstrates the explicit nature of control
flow and typing in LLVM IR. Every instruction contains
type information for its arguments, and when necessary the
result type. In this case only two types are used: i32 and i1;
32 bit and 1 bit integers respectively. In reality a third type
is used in this fragment, namely the type of @factorial:
i32(i32)*. This type can be inferred by the return type
and argument types used in the call instruction and does not
need to be named explicitly. Each basic block is introduced
by a label and is explicitly terminated by a control flow
instruction. Even if execution should fall through to the next
basic block, a branch instruction is still necessary.

LLVM and its intermediate representation supports other
important features such as efficient tail calls, arbitrary in-
struction metadata, precise garbage collection[9], zero-cost
exception handling[5] and atomic memory operations. These
features make LLVM IR an attractive target for compilers.
Compilers that target LLVM get all of these features, anal-
yses and optimizations for free, the quality and quantity of
which are consistently increasing.

3.2 Clang: A C Compiler Frontend
The LLVM Project is also developing a compiler for the C
family of programming languages. It aims to be a drop-in
replacement for GCC that natively targets LLVM IR. While
the project is young and under active development, it is
already considered to be production ready. This project is
currently using Clang to compile the base runtime library
for Scala on LLVM.

4. The LLVM Backend
The LLVM backend for the Scala compiler defines a new
platform component that is selected when the compiler is
invoked with the -target:llvm option. The main contri-

; Primitive Types

%Boolean = type i1

%Byte = type i8

%Short = type i16

%Int = type i32

%Long = type i64

%Float = type float

%Double = type double

%Char = type i32

%Unit = type void

%.class = type {

%.utf8string, ; class name

i32, ; instance size

%.class*, ; parent class

%.vtable*, ; class vtable

%.class*, ; array class

%.class*, ; element type

i32, ; interface count

[0 x %.ifaceinfo] ; interface vtables

}

%.ifaceinfo = type {

%.class*, ; pointer to interface class

%.vtable* ; vtable for interface methods

}

%.object = type { %.class* }

%.ifaceref = type { %.object*, %.vtable* }

; The instance type for

; class object_with_int { var x: Int }

%object_with_int = type {

%.object,

i32

}

Figure 3. Scala types in LLVM

bution of the platform component is to register the LLVM
IR generation phase in the compiler pipeline. This section
describes the design and implementation of this phase.

4.1 Types
This subsection describes how Scala types are mapped to
LLVM types. The definitions for some Scala types in LLVM
IR syntax is shown in Figure 3.

Primitives
Primitive types in Scala map directly to LLVM integer and
floating point types. A notable difference between the prim-
itive sizes we have chosen and the other targets for Scala
is that we define characters to be 32 bits. We have made this
choice so that each Unicode codepoint can be represented by
a single character value. This may also ease interoperability
with C libraries on systems where wchar t is 32 bits.

Submission for the Second Scala Workshop 3 2011/2/8



Objects and Object References
Objects are represented as structures whose first element is
the instance structure for the parent class and the remaining
elements are the fields of the object. An object reference is
simply a pointer to one of these structures. This arrangement
reduces casting between object types to a reinterpretation of
the pointer type.

The base object structure contains a pointer to the class
of the object. Any object reference can be casted to a pointer
to the base object structure to retrieve the class pointer.

Interface References
An interface reference is a pair containing an object refer-
ence and a pointer to the appropriate interface vtable for the
object.

Classes
Classes are global structures containing the class name, the
size of an instance, a pointer to the super class, the class
vtable and a list of interface vtables. The structure also
contains a few other fields for cached derived values and
some fields that are used only for classes representing arrays.

Arrays
Arrays are essentially a special type of object that are in-
stances of special array classes. Array classes for each prim-
itive type are predefined, array classes for other class types
are created on demand and cached in the class record for the
element type. Array classes also contain a pointer back to
the element class. Array instances directly contain the array
data in the same way as a flexible array member in C.

Methods
Methods are translated to functions taking the receiver, if
any, as the first argument and the formal parameters of the
method as the remaining arguments. The function names
encode the argument and return types for proper overload
resolution. An example of the fact method from Figure 1
compiled to LLVM and optimized by the LLVM offline
optimizer can be found in Figure 4.

4.2 Mapping Stacks to SSA
LLVM is a register machine requiring all code to be in
SSA form while ICode is a stack machine. Therefore to
generate LLVM IR from ICode a method of mapping from a
stack based machine to an SSA register machine is needed.
Fortunately a straightforward mapping exists.

Within a basic block it is sufficient to maintain a stack
of SSA values while translating the ICode instructions.
When an instruction is translated, the values it consumes
are popped from this stack and the values that are produced
are pushed. The ICode type of each value is also maintained
on this stack.

Conveying values between basic blocks is somewhat
more complicated. Each basic block is analyzed to deter-

define i32

@method__Ofact_Mfact_Ascala_DInt_Rscala_DInt

(%_Ofact* %.this, i32 %n) {

.entry.:

%"1" = icmp eq i32 %n, 0

br i1 %"1", label %bb.2.-1, label %bb.3.0

bb.2.-1:

ret i32 1

bb.3.0:

%"15" = getelementptr inbounds

%_Ofact* %.this, i32 0, i32 0

invoke void @rt_assertNotNull(%.object* %"15")

to label %bb.3.1

unwind label %bb.3.exh.-2

bb.3.1:

%"14" = add i32 %n, -1

%"17" = invoke i32

@method__Ofact_Mfact_Ascala_DInt_Rscala_DInt

(%_Ofact* %.this, i32 %"14")

to label %bb.3.2

unwind label %bb.3.exh.-2

bb.3.2:

%"18" = mul i32 %"17", %n

ret i32 %"18"

bb.3.exh.-2:

%"19" = tail call i8* @llvm.eh.exception()

%"20" = tail call i32 (i8*, i8*, ...)*

@llvm.eh.selector(

i8* %"19",

i8* bitcast (i32 (i32, i32, i64, i8*, i8*)*

@scalaPersonality to i8*),

%.class* @class_java_Dlang_DThrowable,

i32 0)

%"21" = tail call %.object*

@getExceptionObject(i8* %"19")

%"22" = tail call i32

@_Unwind_RaiseException(i8* %"19")

unreachable

}

Figure 4. Generated LLVM Example: Factorial

Submission for the Second Scala Workshop 4 2011/2/8



mine how many values are required to be on the stack upon
entering the block and how many values the block leaves on
the stack upon exit. The outgoing stack slots of each block
are given unique names based on the block identifier and
the position of the slot on the stack. Before translating the
contents of the basic block, phi instructions are inserted that
map the outgoing stack slots of the predecessor blocks to
the incoming slots of the block. Before completing transla-
tion of a basic block the values remaining on the stack are
assigned to SSA registers with the appropriate distinguished
names. Note that each block is responsible for selecting the
stack slots it uses directly as well as those it merely passes
along to its successors.

4.3 Translating ICode
The LLVM code generation phase iterates over all of the
ICode classes created by the compiler converting each one
to its own LLVM IR file. The type information of the ICode
class is used to build the definition of the global class struc-
ture and the type for instances. If the class is represents a
singleton object a global variable is defined for the instance
and a initialization function is emitted. A global structure
containing any static fields of the class is also emitted.

Each method within the class is translated by creating an
initialization basic block that allocates stack storage for local
variables and copy any arguments into the corresponding
local. Each ICode basic block in the method is translated
into a sequence of LLVM basic blocks by translating each
instruction in sequence, splitting the basic block as necessary
due to exception handling points.

Each ICode instruction is translated to a sequence of
LLVM instructions that implement the semantics if the
ICode instruction. Simple ICode operations can be per-
formed in one or two LLVM instructions while more com-
plicated operations may require many more. For example,
ICode assumes implicit coercions between object and inter-
face references as well as various primitive types so extra
instructions to perform these coercions must be inserted. On
the other hand, stack manipulation operations like DROP and
DUP do not actually require any LLVM instructions, just ma-
nipulation of the value stack that is used when translating the
next instruction. Detailed description of the translation for
each instruction is outside the scope of this paper. Interested
readers can inspect the source code.

The LLVM code emitted by the backend is simplistic
and often contains redundant instructions. This makes it
easier to observe that the proper semantics are implemented
but direct execution would be slower than necessary. The
LLVM optimizer can eliminate much of the redundancy
producing faster code. However, some redundancies are not
currently eliminated by the optimizer. For example, repeated
loading of the class or vtable for a reference is not eliminated
because the optimizer does not realize that the class of a
reference cannot be changed. This example and some others
can be addressed by using functions that lie about their

memory effects. In this case a function that loads a vtable
could be declared with an attribute stating it does not read
any memory even though the definition does. The optimizer
would then correctly assume that the vtable is at the same
address each time it is loaded. Scala specific optimization
passes could be written to address remaining inefficiencies.

4.4 Method Dispatch
Method dispatch is one of the more complicated parts of
compiling Scala to LLVM. The JVM and CIL have built in
method resolution but here we must build it from scratch.
We choose to use a simple vtable method.

Each class contains a single class vtable and any number
of interface vtables. The class vtable is built by iterating over
the ancestor classes. An interface vtable is created for each
interface implemented by the class for the methods defined
in that interface. The entries in the vtable are pointers to the
functions implementing the method corresponding to each
slot in the vtable. Methods are ordered in the vtables so that
the vtable for a subclass contains an appropriate vtable for
the superclass methods as a prefix.

When calling a class method the receiver’s vtable is
loaded through the object’s class pointer. The proper index
in the vtable is loaded and the opaque pointer is casted to the
method’s function type and the method is invoked. Invok-
ing interface methods proceeds in the same way except the
vtable is extracted directly from the interface reference.

4.5 Native Methods
Methods annotated with @native do not have their method
bodies translated to LLVM. Instead the function symbol
for the method is declared as externally provided but is
still registered in any of the class’ vtables. This is used for
methods which are provided as part of the runtime library.

4.6 Exception Handling
The LLVM backend deals with exceptions using LLVM’s
support for zero-cost exception handling as documented in
Exception Handling in LLVM[5]. Functions that can raise
exceptions are called using the invoke instruction. The
invoke instruction specifies the successor block for a nor-
mal return from the function and the successor block for
abnormal exit of the function.

Each ICode method contains a list of exception handlers
that specify which basic blocks are covered by the handler,
the type of exception accepted by the handler and the initial
basic block of the handler’s code. Basic blocks that belong
to exception handlers are no different from the other basic
blocks in the method except that they are not present in the
normal successor set of the method’s entry point.

The unit of coverage for exception handlers in ICode
is the basic block so it suffices to have a single exception
landing pad for each ICode basic block. This block calls the
LLVM exception handling intrinsics that denote the block as
an exception landing pad and extracts the Scala exception

Submission for the Second Scala Workshop 5 2011/2/8



object from the unwind context. The type of the exception
is tested against the types accepted by the handlers that
cover the block in order from inner-most to outer-most.
Control is transfered to the first handler that matches the
exception type. If no exception handlers match the exception
is rethrown.

Since invoke is a control flow instruction it terminates
LLVM basic blocks. However, ICode does not consider ex-
ception handling control flow for defining basic blocks so
the code generator must split the ICode basic blocks. To do
this the code is first generated as a single block ignoring the
control flow effects of the invoke instruction. Note that at
this point the block is not valid LLVM IR. Then the instruc-
tions are traversed and the block is split each time an invoke
instruction is seen, the normal successor is set to the succes-
sor block and the unwind successor is set to the exception
handling block.

5. Runtime
The runtime library for Scala on LLVM implements a subset
of the Java API and a small number of primitive functions
used by the generated LLVM IR, implemented with a mix-
ture of Scala and C/C++. The class structure and methods
for java.lang.Object, java.lang.Class and java.lang.String are
implemented entirely in C. The remaining classes are imple-
mented in Scala with native methods for operations which
cannot be implemented directly in Scala. The primitive func-
tions implement operations for null checking, value box-
ing/unboxing, string concatenation, runtime type checks, in-
terface casts, instance allocation and initialization. Going
forward we intend to continue writing as much of the run-
time in Scala as possible.

The final piece necessary to run Scala programs with
LLVM is the loader. The loader is written in C++ and uses
the LLVM API. It performs the following steps:

1. Initializes LLVM

2. Loads the program’s bitcode

3. Creates a JIT execution engine

4. Initializes the object whose main will be run

5. Dynamically creates a function that will

(a) Install a toplevel exception handler

(b) Convert the argv C array to a Scala Array[String]

(c) Invoke main

6. Calls the created function

The loader currently only supports JIT compilation but
it could be extended to support ahead of time compilation
by emitting the generated function as LLVM bitcode to be
linked with the original program.

6. Current Status
The backend and runtime together are capable of compil-
ing and running a sample program that uses classes, traits,
overloading, overriding, inheritance, exceptions and arrays.
Though this program is simple it exercises a large num-
ber of ICode opcodes and we believe it is representative of
what would be seen in real programs. The backend can also
compile all of Scala’s runtime library to well-formed LLVM
IR. However at this time, programs using the standard li-
brary cannot be run, mainly because of dependencies on Java
classes that remain unimplemented in the runtime library.

The LLVM backend is still quite far from production
ready, however. The largest gaps at compile time and run-
time, respectively, are separate compilation and garbage col-
lection. The rest of this section lays out these and other short-
comings and plans for addressing them.

6.1 Separate Compilation
Separate compilation is not currently possible because the
code generated for method can field resolution depends on
the physical layout of the vtables and object structures. This
information is not available unless the classes involved are
being compiled from source. One strategy for addressing
these types of dependencies is to emit code using a more
declarative style and writing a link-time pass that would as-
semble the structures and instructions to be used at runtime.

Another aspect of separate compilation that is not cur-
rently implemented is a loader for external type informa-
tion. We are currently using the classpath and symbol load-
ers from the compiler’s Java backend. These components
will need to be replaced with implementations that read type
information from LLVM IR and LLVM library archives.
LLVM IR supports arbitrary metadata that could be used
to embed an analog of the ScalaSignature attribute added
to class files. Alternatively, type information could be read
from additional files included in the LLVM library archives.

6.2 Garbage Collection
The runtime for Scala on LLVM does not implement any
kind of automatic memory management so storage allocated
for instances and arrays is never reclaimed. Unlike the JVM
and CIL, LLVM does not supply a garbage collector. It does
provide the capability programs in LLVM IR to denote GC
roots and establish read and write barriers. This information
can be used by an LLVM pass to create stack maps and
other structures and code needed to support precise precise
garbage collection. We hope to integrate an existing collector
or find a way to implement the collector in Scala itself as is
done with MMTk in the Jikes Research Virtual Machine.

Supporting garbage collection may require changes to
the way object and interface references are handled within
functions because LLVM requires that GC roots be in stack
allocated variables while we use LLVM registers to hold
object references. We may implement this by maintaining

Submission for the Second Scala Workshop 6 2011/2/8



a pool of stack variables for references. When a reference
is pushed to the stack we will store that reference in one of
these variables and clear the variable when the reference is
popped.

6.3 Reflection
Fully supporting Scala’s structural types will require reflec-
tion facilities. We have ideas to elide reflection when the
static type of a reference meets the structural type refinement
but reflection will still be required when this information
must be computed at runtime. We are hopeful that declar-
ative method tables used to enable separate compilation can
be used to implement reflection as well.

6.4 Runtime Library
Most existing Scala libraries and programs, including the
Scala compiler and standard libraries, are written assuming
the availability of the Java APIs. The CIL backend for Scala
is exploring a source-to-source transformation to deal with
this problem. However, we do not have any pre-existing run-
time to fall back on and must implement these base libraries
from scratch. We plan to implement them as much as pos-
sible in Scala but recognize that we may need to use native
code to implement certain parts.

6.5 Threads
Our implementation is currently strictly single threaded and
contains non-reentrant code. We will eventually tackle this
problem implementing thread primitives using either native
platform threading libraries or a portable threading abstrac-
tion layer. This particular limitation is currently viewed as
less severe as many useful programs can be written without
support for threads.

7. Future Goals
In this section we propose some future work that goes be-
yond creating a basically functional backend.

7.1 Lightweight Functions
When compiling Scala to Java bytecode each anonymous
function is implemented as a unique class because the JVM
does not have first-class functions or closures. However with
LLVM we could treat functions as a primitive type, much
the same as is done with the JVM primitive types. The
Function class would be represented in LLVM as a pair
containing a pointer to the function and a pointer to the
closure context. This would require changes to other parts of
the compiler because functions are converted to classes early
in the pipeline and ICode has no representation for functions.

7.2 Platform Abstraction of Scala Libraries
Scala’s standard library is currently dependent on the Java
API. It would be good for both the LLVM backend and the
CIL backend to separate the parts of the library that are

tied to the JVM from those that are not. For example, the
JavaConversions class in the collection package would not
have a direct analog on other platforms.

There are also parts of the library that use Java classes
in their implementation for proper interaction with the un-
derlying platform. Example of this include I/O, exception
classes, comparators and mathematics. A potential strategy
is include the platform neutral portions directly in the class
and mix in a trait from a scala.platform package. Each
backend would then have a different implementation of the
traits in scala.platform.

7.3 Foreign Function Interface
A foreign function interface (FFI) would make interaction
with native libraries much easier. We intend to explore an
annotation driven FFI at some point in the future. The an-
notations would provide a declarative means to specify pa-
rameter and result marshalling. A successful implementation
should nearly eliminate the need for the native methods cur-
rently implemented in C. These methods would instead be
implemented with the FFI.

7.4 Scala Specific LLVM Optimizations
LLVM provides facilities for writing language specific opti-
mization passes. These optimizations can exploit high-level
information about the program communicated by the com-
piler by metadata attached to the LLVM instructions. There
may be specific Scala idioms that would benefit from a tar-
geted LLVM optimization.This could include whole pro-
gram optimizations performed at link time. As an example,
if a base class method is only invoked on instances of a cer-
tain subclass loads of the receiver vtable could be replaced
by a direct reference to the subclass vtable.

References
[1] The LLVM Compiler Infrastructure: LLVM Users. http:

//llvm.org/Users.html, 2011.

[2] unladen-swallow: A faster implementation of Python. http:
//code.google.com/p/unladen-swallow/, 2011.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, Oct.
1991. doi: http://doi.acm.org/10.1145/115372.115320. URL
http://doi.acm.org/10.1145/115372.115320.

[4] J. W. Davidson and C. W. Fraser. The design and application
of a retargetable peephole optimizer. ACM Trans. Program.
Lang. Syst., 2:191–202, April 1980. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/357094.357098. URL http://

doi.acm.org/10.1145/357094.357098.

[5] J. Laskey. Exception Handling in LLVM (Version 2.8). The
LLVM Project, Oct. 2010.

[6] C. Lattner. LLVM: An Infrastructure for Multi-Stage Opti-
mization. Master’s thesis, Computer Science Dept., Univer-

Submission for the Second Scala Workshop 7 2011/2/8

http://llvm.org/Users.html
http://llvm.org/Users.html
http://code.google.com/p/unladen-swallow/
http://code.google.com/p/unladen-swallow/
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/357094.357098
http://doi.acm.org/10.1145/357094.357098


sity of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002.
See http://llvm.cs.uiuc.edu.

[7] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceed-
ings of the 2004 International Symposium on Code Genera-
tion and Optimization (CGO’04), Palo Alto, California, Mar
2004.

[8] C. Lattner and V. Adve. LLVM Language Reference Manual
(Version 2.8). The LLVM Project, Oct. 2010.

[9] C. Lattner and G. Henrikson. Accurate Garbage Collection
with LLVM (Version 2.8). The LLVM Project, Oct. 2010.

[10] M. Odersky and M. Zenger. Scalable component abstrac-
tions. In Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’05, pages 41–57, New
York, NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi:
http://doi.acm.org/10.1145/1094811.1094815. URL http:

//doi.acm.org/10.1145/1094811.1094815.

[11] D. A. Terei and M. M. Chakravarty. An llvm backend
for ghc. In Proceedings of the third ACM Haskell sympo-
sium on Haskell, Haskell ’10, pages 109–120, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0252-4. doi:
http://doi.acm.org/10.1145/1863523.1863538. URL http:

//doi.acm.org/10.1145/1863523.1863538.

Submission for the Second Scala Workshop 8 2011/2/8

http://doi.acm.org/10.1145/1094811.1094815
http://doi.acm.org/10.1145/1094811.1094815
http://doi.acm.org/10.1145/1863523.1863538
http://doi.acm.org/10.1145/1863523.1863538

	Introduction
	The Scala Compiler
	Compiler Phases
	ICode
	Platforms

	Low Level Virtual Machine
	Intermediate Representation
	Clang: A C Compiler Frontend

	The LLVM Backend
	Types
	Mapping Stacks to SSA
	Translating ICode
	Method Dispatch
	Native Methods
	Exception Handling

	Runtime
	Current Status
	Separate Compilation
	Garbage Collection
	Reflection
	Runtime Library
	Threads

	Future Goals
	Lightweight Functions
	Platform Abstraction of Scala Libraries
	Foreign Function Interface
	Scala Specific LLVM Optimizations


